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Abstract 

Previous work investigating rapid intensification (RI) predictability within Atlantic tropical cyclones (TCs) has revealed numerous 
challenges in identifying parameters useful in predicting RI. In particular, false alarm RI forecasts are notably high, driving down 
forecast skill despite higher RI detection rates. RI forecast improvement will be achieved by identifying spatial patterns distinct to 
RI false alarm cases that help distinguish them from correctly forecast RI events. A previously developed machine learning 
ensemble was used to hindcast on a database of Atlantic TCs spanning 1999 – 2016 to identify false alarm RI forecasts, as well as 
correct RI forecasts.  Each set of cases (correct and false alarm) was used to develop kernel principal component (KPC) based 
composites of important meteorological features within RI TCs to facilitate meteorological comparisons against correctly forecast 
events. Optimality was determined using a simple metric based on a cluster analysis silhouette and compared against a baseline of 
traditional k-means cluster analysis, hierarchical analysis, and rotated PC analysis.  Once optimal cluster configurations were 
identified for each meteorological feature, events within each cluster were averaged to yield composites, which in turn were used 
to facilitate meteorological comparisons between false alarm and correctly forecast RI events. 
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1. Introduction 

Classification problems within atmospheric sciences continue to weigh the benefits of adequately detecting 
occurrences of important meteorological events (e.g. tropical cyclone rapid intensification – RI) at the expense of 
increased false alarm ratios [1].  Recent advances in RI forecast algorithms (primarily the Statistical Hurricane 
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Intensity Prediction System Rapid Intensification Index – SHIPS-RII [2]) for Atlantic RI have maintained steadily 
high probabilities of detection, where probability of detection (POD) is defined as the percentage of RI occurrences 
identified by the forecast algorithm.  In particular, the SHIPS-RII had a 97.4% detection rate for RI events during the 
2017 Atlantic hurricane season (18 tropical cyclones (TCs), 6 of which were major hurricanes).  However, this result 
came at the expense of a high false alarm ratio (FAR; 85.4%), defined as the percentage of RI forecasts in which no 
RI occurred.  This elevated FAR is primarily responsible for decreased forecast skill within Atlantic TC forecasts 
(SHIPS-RII produced a Heidke Skill Score – HSS - of 0.097, where 1 is a perfect forecast and 0 has no skill).  These 
performance issues exacerbate public communication challenges, as public inactivity during natural disaster situations 
increases with increasing FAR [3]. 

Recent developments in RI prediction [4-6] have produced a machine-learning RI classification ensemble to issue 
operational RI forecasts, currently under testing by the National Hurricane Center (NHC).  Each ensemble member 
issues a single RI/non-RI class forecast and contributes to a global RI probability for the full ensemble.  A preliminary 
version of this ensemble [6] yielded a POD of 31.6% for the 2017 Atlantic hurricane season, though it did reduce the 
FAR to 74.4%, which yielded an increased HSS of 0.193.   

While the higher HSS was encouraging, additional feature selection and ensemble development was implemented 
to further improve performance.  In this update, we considered TC events spanning 1999-2016 (a total of 5409 TC 
timesteps) and limited predictors to the SHIPS-RII and NHC HURDAT2 database [7]. The optimal feature set was 
determined using a leave-one-year out cross-validation approach with logistic regression and resulted in 7 features 
(24-hour peak wind gust change, 6-hour peak wind gust change, an ocean heat content predictor, a cloud-top brightness 
temperature predictor, average 200 mb zonal wind speed, 200 mb divergence, and a shear predictor). Once the optimal 
feature set was identified, numerous support vector machine (SVM), random forest (RF), and backpropagation neural 
network (NNET) configurations were cross-validated to identify ensemble membership (through maximizing HSS).  
As each ensemble member (Table 1) yielded an individual RI forecast, a global ensemble RI probability was obtained 
by training NNET, SVM, and RF configurations on the ensemble output.  The optimal global probability configuration 
that resulted was a 2nd degree polynomial SVM with a cost of 1 and a γ of 0.05.  This improved ensemble still produced 
output with FAR values exceeding 0.5, showing the need for further investigation into the false alarm problem. 

The primary objective of this research is to identify meteorological characteristics associated with false alarm RI 
events and compare them with RI events correctly forecast by the previously described machine-learning ensemble.  
Composite fields will be created by testing several clustering algorithms to identify optimal groupings of correctly 
forecast RI events (hereafter referred to as hits) and false alarm events.  Meteorological composites, based on averaging 
the resulting clusters, will be analyzed for differences to identify unique patterns associated with hits and false alarms.  
These revelations will inform future machine-learning ensemble development to potentially reduce false alarms while 
maintaining high detection rates. 

2. Data and Methodology 

 During the training of the machine learning ensemble (described previously), each TC timestep was used for 
independent testing.  Each timestep where half the ensemble members issued a false alarm forecast (RI predicted when 
no RI was seen in the observation wind field) was retained as a false alarm (368 total), while each instance where at 
least half of the ensemble members issued a correct RI forecast was added to a database of hits (110 total). These cases 
were used to formulate composites, as described below. 

 
2.1  Composite Datasets 
 

To quantify the TC environment, the meteorological composites required a three-dimensional continuous dataset.  
Additionally, a dataset that emulates an operational forecasting environment was ideal, as this type of data would 
include forecast errors and biases inherent in real-time TC forecasts.  Such datasets are only available from archived 
historical numerical weather prediction databases, and for this project the Global Forecast System Final analysis (FNL 
– [8]) fields were utilized.   
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Table 1. Machine-learning ensemble members (24 total).  SVMs provide the associated kernel (RBF for radial basis function and Poly for a 
polynomial kernel with its associated degree) and cost.  RFs with a number of trees and features used to formulate each tree provided.  NNETs 
refers to a single layer backpropagation neural network with a number of hidden nodes and decay rate provided.   

 

SVMs Kernel Cost RFs Trees Features NNETS Hidden Nodes Decay 

SVM1 RBF 1000 RF1 5000 3 NNET1 2 0.0025 

SVM2 RBF 1000 RF2 15000 2 NNET2 3 0.0025 

SVM3 

SVM4 

SVM5 

SVM6 

SVM7 

SVM8 

RBF 

Poly-2 

Poly-3 

Poly-3 

Poly-4 

Poly-4 

1000 

1000 

1000 

10 

100 

10 

 

RF3 

RF4 

RF5 

RF6 

15000 

15000 

15000 

25000 

3 

4 

5 

4 

NNET3 

NNET4 

NNET5 

NNET6 

NNET7 

NNET8 

NNET9 

NNET10 

2 

3 

2 

4 

2 

2 

3 

3 

0.005 

0.005 

0.0075 

0.0075 

0.01 

0.0125 

0.0125 

0.015 

 
These fields are updated and corrected versions of traditional Global Forecast system (GFS) analysis fields, which are 
global model-derived analysis fields generated every 6 hours for operational forecast purposes.  The FNL data, which 
span the 1999-2016 timeline of the TC databases described above, are provided on a 1° x 1° latitude-longitude grid 
with 26 vertical levels spanning 1000 mb to 10 mb.  All base-state meteorological fields (e.g. temperature, pressure, 
wind component magnitudes, humidity) are provided at all levels, as well as some derived fields (e.g. precipitable 
water, vorticity).   
 A variety of meteorological research studies have shown the importance of upper level wind fields (primarily 
divergence at 200 mb), vertical shear, and low and mid-level thermodynamics in diagnosing the probability of RI [2,9-
11]. To quantify these TC characteristics, 850 mb and 500 mb equivalent potential temperature θe [12], 850-200 mb 
wind shear (where shear magnitude is determined as the vector difference in the winds at both levels), and 200 mb 
wind field divergence were computed from the FNL fields. θe is widely considered to be a good estimate of the 
thermodynamic potential energy of the atmosphere [12] as it incorporates heat added by phase change of all water 
vapor into the column (thereby incorporating atmospheric humidity) and an adiabatic compression of the atmospheric 
parcel to a reference pressure level (1000 mb).  
 Additionally, composite analyses benefit from Lagrangian reference frames (those which follow the TC) to ensure 
minimal damping of important features due to the compositing methodology. To create storm-centric domains, the 
storm center was determined by first identifying the National Hurricane Center’s storm center estimate from their 
Hurricane Databases (HURDAT2) dataset [7], and then searching the mean sea level pressure fields (using a 300 km 
search radius) within the associated FNL dataset (at the same observation time) for a local minimum in pressure, 
thereby removing any model initialization errors in initial storm position.  Once centers were established, 19° x 19° 
latitude longitude storm-centric grids (361 gridpoints, roughly 1000 km x 1000 km domains) were retained for all 
tested meteorological variables for use in the composite analysis.   
 
2.2  Composite Methodology 
 
 Meteorological research has employed a variety of composite analysis techniques, from simple averaging [13] to 
hierarchical and k-means clustering [14] and more sophisticated methods such as k-means clustering on rotated 
principal components (RPCA) [15].  Recent work [16] has shown benefits from kernel principal component analysis 
(KPCA) combined with k-means cluster analysis owing to its relaxation of linearity assumptions and its 
configurability.  This study assessed the benefits of KPCA over traditional methods by considering four clustering 
methods (hierarchical clustering using Wards method, k-means clustering, RPCA with k-means clustering on the 
loadings, and KPCA with k-means clustering on the loadings).   
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 Prior to separating the data into hit and false alarm subsets, the full FNL database (i.e. all 5409 Atlantic TC 
timesteps) was standardized by computing standard anomalies by gridpoint (which revealed spatial locations with 
abnormally high or low magnitudes for each variable).  Hit and false alarm databases were retained from these 
standardized FNL fields.   
 As 8 total datasets were considered independently, cluster analyses were completed on each standardized database 
to identify meteorological characteristics unique to each event type (hit or false alarm). All previously described 
clustering methods were tested, including hierarchical clustering (using Ward’s method and a Euclidean distance 
matrix) and k-means cluster analysis.  Additionally, both RPCA and KPCA were implemented, where the optimal 
number of retained PCs was determined using North’s test [17].  KPCA also required the selection of an optimal 
kernel similarity matrix, of which two were tested: a radial basis function (RBF – equation 1) and a polynomial kernel 
(equation 2).   
 

																	���� �� � ��� �� �|� � �|�
��� �																																																																																																																																				��� 

																	���� �� � ��� � ���																																																																																																																																																	��� 
 
Here, x and y are mapped vectors to compute a kernel matrix.  RBF kernels were tuned by altering σ (Gaussian spread) 
values (ranging from 25 to 500 at intervals of 25 for a total of 20 possible configurations), and polynomial kernels 
were altered by modifying the polynomial’s degree d (ranging from 2 to 5 for a total of 4 configurations).   The 
polynomial KPCA cluster analysis consistently provided poorly dispersed clusters (e.g. the 200 mb divergence 4th 
degree polynomial false alarm grouping yielded groups of 30, 5, and 333 events), which is too similar to a simple 
mean composite of all cases and was not ideal.  As a result, we only used RBF kernels in the KPCA.   
 Given the large number of clustering methods tested, a metric used to determine the optimal grouping was required.  
The silhouette coefficient (SC – [18]) provides a unique measure of cluster analysis success by simultaneously 
assessing cluster quality and revealing misclustered events.  Values of 1 for the SC suggest maximum separation 
between clusters and minimal intracluster distance (a high-quality clustering), while negative SCs imply cohesion 
among the cluster is larger than separation between clusters, meaning the event is likely misclustered.  As a global 
cluster analysis performance metric was needed to optimize the clustering, the average SC for all events in a given 
cluster analysis was scaled by the percentage of correctly clustered events.  This metric would be notably small for 
analyses in which a large percentage of events were misclustered, which would typically be associated with a reduced 
average SC.  Resulting graphs of the scaled SC by clusters retained (e.g. Fig. 1) revealed the optimal configuration 
for each meteorological variable and each database (false alarms and hits – Table 2).  The results were consistent with 
previous work [16], showing KPCA to be the preferred clustering method for all 8 considered databases. 

3. Composite Results 

 The selected analysis methods produced numerous clusters (and thus composites) for each variable and each event 
type (either false alarm or hit – Table 2).  For the sake of brevity, the hit database composite with the highest 
membership (Table 2) is shown (Figs. 2-5, left panel), as well as the false alarm composite with the highest positive 
correlation to the hit composite (thereby the most spatially consistent with the hit field – right panels of Figs. 2-5).   
 The composite fields revealed important differences in the lower-level (850 mb) θe fields, including a notable θe 
gradient that spans west – east in the false alarm composites that was largely non-existent in the hit composite fields.  
In fact, all false alarm clusters but 2 and 3 contained this notable θe gradient, and clusters 2 and 3 showed θe values up 
to 1 standard deviation below average (thereby containing less thermodynamic potential energy).  Interestingly, 
several of the 850 mb θe hit composites did not show elevated θe values but instead revealed patterns as much as 1 
standard deviation below the mean (not shown).  These patterns, while surprising, were much less common (only 28 
of the 110 hit events) than the elevated θe pattern shown in the most common hit pattern (left panel of Fig. 2).  These 
results strongly suggest most false alarm events are characterized by a strong horizontal 850 mb θe gradient and/or 
below average θe values. 
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Fig. 1.  850 mb θe silhouette coefficient metrics by clusters kept for the false alarm databases.  The star shows the optimal configuration.  Similar 
figures were generated to determine the optimal cluster configurations for each dataset. 

Table 2. Optimal cluster analysis configuration for each dataset.  All databases yielded optimal silhouette metric results using KPCA with varying 
RBF σ values (given below) with associated SC metrics and cluster sizes.  The list of numbers under cluster sizes shows the number of clusters in 
each composite set.  Note that the cluster order is arbitrary.  A column identifying the variance explained by the KPCA and the kept KPCs is 
provided as well. 

False Alarms 

Variable σ KPCs Kept Variance Explained Silhouette Metric Cluster Sizes 

850 mb θe 25 6 0.768 0.398 57, 22, 34, 35, 61, 
31, 31, 34, 23, 40 

500 mb θe 75 4 0.822 0.424 166, 59, 143 

850-200 mb shear 

200 mb divergence 

75 

500 

3 

8 

0.626 

0.526 

0.417 

0.245 

65, 241, 44, 45 

29, 51, 35, 75, 46, 
54, 43, 35 

Hits 

Variable σ KPCs Kept Variance Explained Silhouette Metric Cluster Sizes 

850 mb θe 25 6 0.834 0.489 3, 15, 60, 10, 22 

500 mb θe 200 3 0.857 0.550 27, 68, 15 

850-200 mb shear 

200 mb divergence 

75 

175 

3 

6 

0.772 

0.501 

0.604 

0.306 

14, 81, 15 

5, 25, 63, 6, 11 
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Fig. 2.  850 mb θe composites for the most common (N=60) hit pattern (left) and the most highly correlated (r = 0.48) false alarm composite pattern 
(right).  Contours are standard anomalies. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.  500 mb θe composites for the most common (N=68) hit pattern (left) and the most highly correlated (r = 0.22) false alarm composite pattern 
(right).  Contours are standard anomalies. 
 
 The θe results at 500 mb were less revealing (Fig. 3). The most common hit pattern (N=68 – left panel of Fig. 3) 
showed elevated θe patterns throughout the domain, while the other two hit clusters showed similar θe patterns that 
were below average (not shown).  This result suggested no prevalent spatial pattern in θe associated with hit events 
but instead revealed domain-wide elevated or reduced θe values.  The false alarm composite patterns showed similar 
results to the hits, with one dominant pattern that shows elevated (albeit slightly less elevated) θe values (Fig. 3, right 
panel), and the remaining composites also showing cooler than average θe values and no discernable spatial patterns 
within the fields.  These limited differences suggest using mid-level thermodynamics as predictors in RI forecasting 
schemes could increase false alarms, thus removing these fields may improve the false alarm problem. 
 The 850-200 mb shear patterns (Fig. 4) were similar, both showing below-average vertical shear values in the most 
common hit pattern and most highly correlated false alarm pattern.  This is not surprising as low-shear environments 
are known to support RI [2].  However, one hit composite (cluster 1, N=14) showed a strong east to west shear 
gradient, with elevated shear on the eastern side of the TC domain.  A similar false alarm composite (cluster 1, N=65) 
showed the same gradient, but flipped, suggesting shear on the eastern side of the domain is more conducive to an 
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accurate machine learning RI forecast and on the west side can lead to a false alarm forecast.  Physical reasons for this 
discrepancy will be considered in future work. 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
Fig. 4.  850-200 mb vertical shear composites for the most common (N=81) hit pattern (left) and the most highly correlated (r = 0.44) false alarm 
composite pattern (right).  Contours are standard anomalies. 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.  200 mb divergence composites for the most common (N=63) hit pattern (left) and the most highly correlated (r = 0.49) false alarm composite 
pattern (right).  Contours are standard anomalies. 
 
 The 200 mb divergence patterns (Fig. 5) revealed very little in terms of spatial pattern differences, as both hit 
composites and false alarm composites were quite noisy (which is expected in a divergence field).  However, the fifth 
hit divergence composite field (N=11) showed a coupling of above and below average divergence, with a similar 
pattern showing up in the third false alarm composite (N=35), but with higher magnitude negative divergence regions.  
The pattern’s orientation suggests RI is being forecast when upper level stretching deformation is observed, but the 
orientation of that deformation pattern may help distinguish hits from false alarms in cases with high magnitudes in 
the upper levels.  As this result was relatively uncommon, increased understanding of kinematic patterns may help 
reduce false alarms in some instances. However, improved representations of low-level thermodynamics are likely 
key for reducing the false alarm problem within Atlantic RI forecasts. 

4. Summary and Conclusions 

 False alarms within Atlantic TC RI forecasts continue to be a major challenge and contribute to a significant 
reduction of forecast skill.  Improvements to RI forecasts require better understanding of what types of variables and 
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patterns are associated with false alarm RI forecasts.  The objectives of this study were to identify spatial patterns and 
variables that help distinguish false alarm RI predictions from correct RI forecasts to reduce this false alarm problem.   
 False alarm and hit events were determined using a machine learning ensemble currently in testing for operational 
forecasts of RI in Atlantic TCs.  In total, 368 false alarm events and 110 hit events were identified.  Four meteorological 
characteristics (850 mb and 500 mb θe, 850-200 mb shear, and 200 mb divergence) were retained, and each variable 
and database was clustered using a variety of clustering methods (8 total datasets resulted). By using the SC metric to 
identify the optimal cluster analysis method, we found that KPCA continually outperformed all other considered 
clustering techniques from previous work (Table 2).  Once the best clustering was found, we averaged all members in 
each cluster to create composite fields.  The resulting patterns (Figs. 2-5) revealed that low-level thermodynamic fields 
showed the greatest distinctions between hits and false alarms, notably the existence of a horizontal θe gradient in false 
alarms absent from hit events.  Other notable kinematic results revealed major distinctions in some of the smaller 
clusters, suggesting limited false alarm reduction is possible by considering kinematics, but most effort should focus 
on low-level thermodynamics.   
 Future work will analyze additional FNL fields to identify other notable pattern differences between hits and false 
alarms. We will then incorporate important findings into the existing machine learning ensemble for RI forecasts.  
Ultimately, improved RI forecast skill by reduction of false alarms is the primary goal of this research, and this study 
is a first step towards that outcome. 
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